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Introduction

In NLP words are represented as indices in a vocabulary.

I Advantages: simplicity and robustness.

I Disadvantage: in automatic speech recognition the
performance is dominated by the size of the data.
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Project goals

I Test techniques for measuring the quality of the resulting
vector representations.

I We expect that not only similar words tend to be close to each
other, but that words can have multiple degrees of similarity.

I The quality of words representation is measured in task of
answering the query.
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Answering the query

I Given a pair of words (a, b) and word c .

I Task is to find the word d , such that semantic similarity in
pair (c, d) is the same as in pair (a, b).

I Examples of queries:

a b c d
France Paris Germany Berlin
Big Bigger Small Smaller
Man Brother Woman Sister
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Neural network language model

I The sparse history h is projected into some continuous
low-dimensional space, where similar histories get clustered.

I Thanks to parameter sharing among similar histories, the
model is more robust: less parameters have to be estimated
from the training data.
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Dataset and quality estimation metric

I We have used a corpus of English Wikipedia articles for
training the word vectors.

I This corpus contains about 13M tokens. We have restricted
the vocabulary size to 100K most frequent words.

I As a measure of word closeness we have used cosine distance
between word vectors.
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Model architectures

I Feedforward Neural Net Language Model

I Recurrent Neural Net Language Model

I Continuous Bag-of-Words Model

I Continuous Skip-gram Model
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Feedforward Neural Net Language Model

Figure 1: Feedforward neural network based LM used by Y. Bengio and
H. Schwenk.[2] 9 / 15



Recurrent Neural Net Language Model

I Input layer w and output layer y have the same dimensionality
as the vocabulary (10K - 200K)[1].

I Hidden layer s is orders of magnitude smaller (50 - 1000
neurons).

I U is the matrix of weights between input and hidden layer, V
is the matrix of weights between hidden and output layer.

I Without the recurrent weights W , this model would be a
bigram NNLM.

I Complexity per training example Q = H × H + H × V . 10 / 15



Continuous Bag-of-Words Model

I All words get projected into the same position.

I Task is to build a log-linear classifier with four future and four
history words at the input.

I The training criterion is to correctly classify the current
(middle) word.

I Training complexity is Q = N × D + D × log2(V ).
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Continuous Skip-gram Model

I Each current word is used as an input to a log-linear classifier
with continuous projection layer.

I Words are predicted within a certain range before and after
the current word.
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Results

I Quality of models was estimated on set of 3k queries
consisting of 4 words.

I Query is answered correctly only if model’s guess is exactly
the last word in query.

I Model score is a percentage of correctly answered queries.

Model Score
SVD as word2vec 0%
Bag-of-Words 26%

13 / 15



Conclusion

I SVD is not suitable for our task because of the problem of
extrapolating semantic similarity from one bigram to the
other.

I Models as RNNLM or Feedforward overcome this as the
embedding space for these models is linear.

I We used the embedding with dimensionality 3 times smaller
than it was proposed in article in order to save time for
training.

I Our Bag-of-Words outperformed Freeforward NNLM, RNNLM
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