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Introduction

In NLP words are represented as indices in a vocabulary.
» Advantages: simplicity and robustness.

» Disadvantage: in automatic speech recognition the
performance is dominated by the size of the data.
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Project goals

» Test techniques for measuring the quality of the resulting
vector representations.

> We expect that not only similar words tend to be close to each
other, but that words can have multiple degrees of similarity.

» The quality of words representation is measured in task of
answering the query.
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Answering the query

» Given a pair of words (a, b) and word c.

> Task is to find the word d, such that semantic similarity in
pair (c, d) is the same as in pair (a, b).

» Examples of queries:

a b C d
France | Paris Germany | Berlin
Big Bigger | Small Smaller
Man Brother | Woman | Sister
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Neural network language model

» The sparse history h is projected into some continuous
low-dimensional space, where similar histories get clustered.
» Thanks to parameter sharing among similar histories, the

model is more robust: less parameters have to be estimated
from the training data.
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Dataset and quality estimation metric

» We have used a corpus of English Wikipedia articles for
training the word vectors.

» This corpus contains about 13M tokens. We have restricted
the vocabulary size to 100K most frequent words.

» As a measure of word closeness we have used cosine distance
between word vectors.
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Model architectures

v

Feedforward Neural Net Language Model

v

Recurrent Neural Net Language Model
Continuous Bag-of-Words Model

v

v

Continuous Skip-gram Model
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Feedforward Neural Net Language Model
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Figure 1: Feedforward neural network based LM used by Y. Bengio and

H. Schwenk.[2] 9/15



Recurrent Neural Net Language Model
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» Input layer w and output layer y have the same dimensionality
as the vocabulary (10K - 200K)[1].
» Hidden layer s is orders of magnitude smaller (50 - 1000
neurons).
> U is the matrix of weights between input and hidden layer, V
is the matrix of weights between hidden and output layer.
» Without the recurrent weights W, this model would be a
bigram NNLM.
» Complexity per training example Q = Hx H+ H x V. 10/15



Continuous Bag-of-Words Model

v

All words get projected into the same position.

v

Task is to build a log-linear classifier with four future and four
history words at the input.

v

The training criterion is to correctly classify the current
(middle) word.

Training complexity is Q = N x D + D X logx(V).

v
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Continuous Skip-gram Model

» Each current word is used as an input to a log-linear classifier
with continuous projection layer.

» Words are predicted within a certain range before and after
the current word.
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Results

» Quality of models was estimated on set of 3k queries
consisting of 4 words.

» Query is answered correctly only if model's guess is exactly
the last word in query.

» Model score is a percentage of correctly answered queries.

Model Score

SVD as word2vec | 0%
Bag-of-Words 26%
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Conclusion

» SVD is not suitable for our task because of the problem of
extrapolating semantic similarity from one bigram to the
other.

» Models as RNNLM or Feedforward overcome this as the
embedding space for these models is linear.

> We used the embedding with dimensionality 3 times smaller
than it was proposed in article in order to save time for
training.

» Our Bag-of-Words outperformed Freeforward NNLM, RNNLM
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