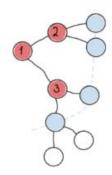
LanczosNet

Kaloshin Pavel Kolos Maria Melentev Nikita Maame Gyamfua Marina Pominova

https://github.com/mvkolos/LanczosNet

Problem

Graph classification



CORA	CiteSeer	Pubmed
2708 scientific publications, 7 classes.	Another scholarly dataset, 3327 publications, 6 classes	Subset of 19717 citations for biomedical literature, 3 classes

Background

Graph convolution

$$Y = \sigma(SXW), \ S = D^{-\frac{1}{2}}(I+A)D^{-\frac{1}{2}}$$

Graph filter

$$Y = \sigma(g(S^0, S^1, S^2, ..., S^k)XW)$$

Background R₁ Rii В R В **R**11 Rii Qт V_T R

S

$$Y = \sigma(g(S^0, S^1, S^2, ..., S^k)XW)$$

V = QB

Key Ideas

- 1. Learnable filters
- 2. Low-cost and general multi scale features
- 3. Exponent kernel for learnable embeddings

$$Y_j = [X_i, SX_i, \dots, S^{K-1}X_i] \boldsymbol{w}_{i,j} \approx [X_i, VRV^\top X_i, \dots, VR^{K-1}V^\top X_i] \boldsymbol{w}_{i,j}$$
$$Y_j = [X_i, V\hat{R}(1)V^\top X_i, \dots, V\hat{R}(K-1)V^\top X_i] \boldsymbol{w}_{i,j}.$$

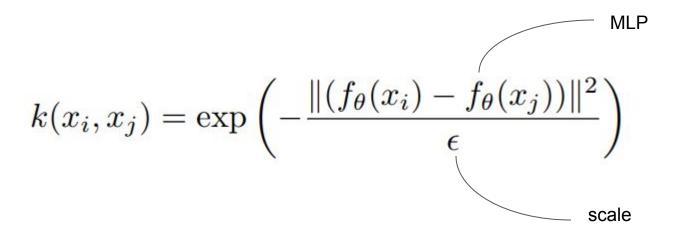
Key Ideas

- 1. Learnable filters
- 2. Low-cost multi scale features
- 3. Exponent kernel for learnable embeddings

$$Y = \left[L^{\mathcal{S}_1}X, \dots, L^{\mathcal{S}_M}X, V\hat{R}(\mathcal{I}_1)V^{ op}X, \dots, V\hat{R}(\mathcal{I}_N)V^{ op}X
ight]W$$

Key Ideas

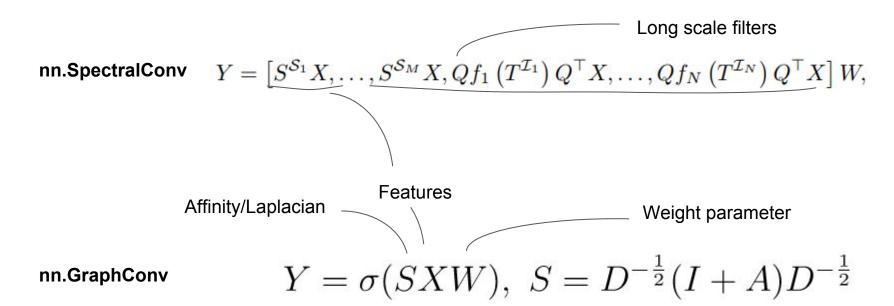
- 1. Learnable filters
- 2. Low-cost multi scale features
- 3. Exponent kernel for learnable embeddings



The experiments

- LanczosNet. Paper re-implementation + architecture experiments
- AdaLanczosNet. Learning node embeddings
- LanczosNet. Multihead attention

LanczosNet. Paper re-implementation + architecture experiments

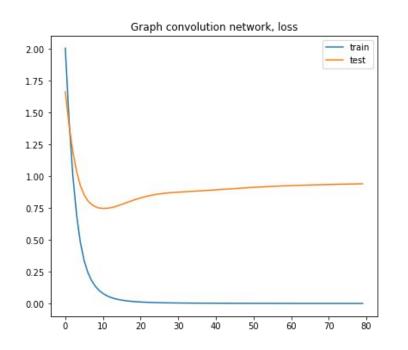


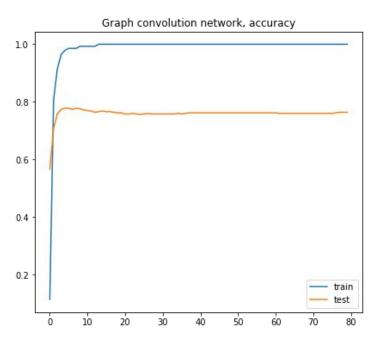
LanczosNet. Paper re-implementation + architecture experiments

Short scale filters
$$Y = \underbrace{\left[S^{\mathcal{S}_1}X, \dots, S^{\mathcal{S}_M}X, Qf_1\left(T^{\mathcal{I}_1}\right)Q^{\top}X, \dots, Qf_N\left(T^{\mathcal{I}_N}\right)Q^{\top}X\right]W},$$

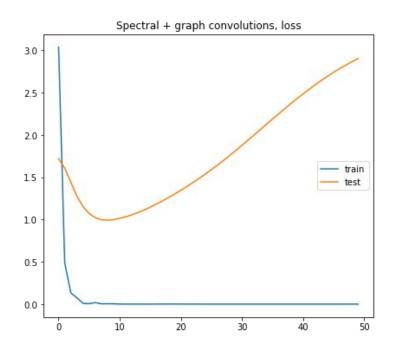
Setting	Vanilla graph convolutions	Spectral convolutions	Spectral + MLP	Spectral + vanilla graph (+ Dropout + BatchNorm)	The paper
Results	CORA: 78 PubMed: 76 CiteSeer: 61	CORA: 74 PubMed: 45 CiteSeer: 66	CORA: 76 PubMed: out of memory CiteSeer: 64	CORA: 78 PubMed: 76 CiteSeer: 65	CORA: 79 PubMed: 78 CiteSeer: 66
Insights	Still good	Overfit badly	Still overfit badly	Best performance	How?

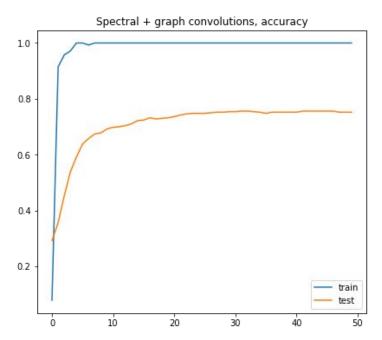
Visualization



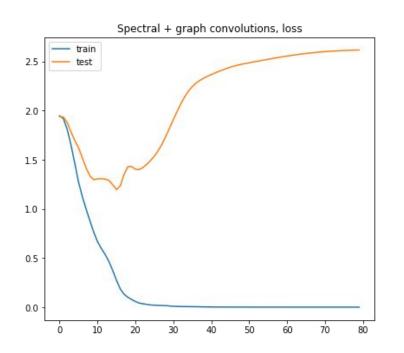


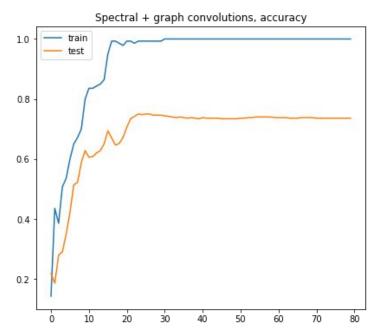
Visualization





Visualization



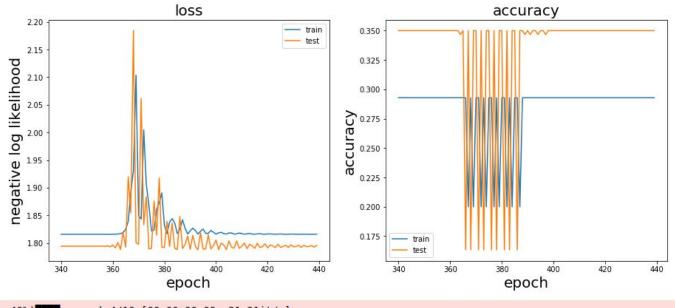


LanczosNet. Multihead attention

capturing graph structure over nodes in the neighbourhood $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{i,j} \exp(e_{ik})}$ a - attention, eig - feature-based coefficients for nodes pairs

Setting	SpectralConv + GraphConv	SpectralConv + GraphConv + Attention	Attention	
Results	CORA: 78 CiteSeer: 65	CORA: 82 CiteSeer: 40	CORA: 80,5 CiteSeer: 68,1	
Insights	Fast	Really slow & memory intensive, almost no improvement		

AdaLanczosNet. Learning node embeddings



40% 40% 4/10 [00:00<00:00, 31.91it/s]

Epoch: 0341

loss_train: 1.8159 acc_train: 0.2929 loss_val: 1.7959 acc_val: 0.3500

Results summary

- reproduced results from the paper for citation networks
- investigated key ideas: learnable filters, large scale features, kernel
- discovered problems with overfitting and embedding learning