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Success of Combinatorial model

Model=

(
graph

object1

)
+

(
site

object2

)
Ising-like models=

(
structure

bond

)
+

(
charge

spin

)
describes

magnetism.

Hopfield model=

(
neural

network

)
+

(
neuron
firing

)
comp.neuroscience.

Tensor network describes approximate computational model.

→Phase transition

Combinatorial problems are NP-hard.

Big question

How far combinatorial(approximation) algorithms could go?



3/14

Motivations Formulations Methods Results Discussions

Combinatorial object

Ising model=Chromatic number[Welsh and Merino, 2000]
Ising model is NP hard. Graph polynomial is hard.
Zero limit of Ising model is finding coloring from the
polynomial.

Tensor network
Most tensor problems are NP-hard[Hillar and Lim, 2013]
Tensor network algorithms are also complexity hard
APPROXIMATION

→ Tensor network Renormalization Group
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Quantum chromatic number

Graph coloring game(Classical chromatic number χ)

Alice wins the game if she can graph-color without interaction.

Quantum graph coloring game(χq)

Graph coloring game+Quantum pseudotelepathy(entanglement)

ζ ≤ χq ≤ χ, minV (Gknown) = 1609Avis2006, 18Cameron2007

Problem statement 1

Is there graph smaller than 18 whose quantum and classical
chromatic numbers are different?
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Thus spoke Ivan, Graph coloring is

, with some optimization methods,

Eigenvalues of Laplacian[Wilf-Hoffman’s bound]

L = Id − A = (i= d − µi )→ dave ≤ µ1 = max xTAx
xT x

≤ dmax

max(A) ≥max (A′) ≥min (A′) ≥min (A), [µ1] + 1 ≤ χ(G ) ≤ µ1−µn

−µn

Defining coloring relation

matrix k coloring, vector k coloring(equivalent)
vector k + ε coloring can be constructed in O(nlog(1ε ) with
Cholesky factorization
(combinatorial optimization relaxation-maxcut
algorithms-goesmanwiliam)
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And thus spoke Ivan, Tensor RG is



7/14

Motivations Formulations Methods Results Discussions

Square lattice

SVD decomposition

Reduce rank

Merge

Calculate energy
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Square lattice[Cook,MIT project15]

Figure 1: Square lattice tensor network renormalization group
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Graph coloring

O(3N) : coloring ,O(2NN2) : MAXclique

Greedy heuristic algorithm with logarithmic error bound

Set cover based approach
Bipartite coloring optimization
Local search
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TRG on Honeycomb lattice

Geometrical replacement

SVD decomposition

Reduce rank

Merge

Calculate energy
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Chromatic number results(18)
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Tensor network renormalization result (Honeycomb lattice)

Figure 2: Honeycomb latice tensor network renormalization group
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Conjecture

Additional NLA project(Ivan’s problem)

There exist n∈N such that ∀G ,V (G ) ≤ n→ |ζ(G )− χ(G )| = 1

Figure 3: Example for random graph of 10
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Real Discussion

What is the polynomial extension of quantum chromatic
number?

What is the complexity class?
How does it related to physical phenomenon?

Can tensor network explain (quantum) communication
complexity?

Nonlocal game(=graph coloring game)
Bell’s inequality(Tsirelson’s conjecture)
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