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Motivations Formulations Methods Results Discussions

Success of Combinatorial model

_( graph site
Model= (object1> + (object2>

o lIsing-like models= <structure> + <char.ge> describes

bond spin
magnetism.
. / .
o Hopfield model= neura + ne'u.ron comp.neuroscience.
network firing

o Tensor network describes approximate computational model.

—Phase transition

Combinatorial problems are NP-hard.

Big question

How far combinatorial(approximation) algorithms could go?
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Combinatorial object

o Ising model=Chromatic number[Welsh and Merino, 2000]
Ising model is NP hard. Graph polynomial is hard.
Zero limit of Ising model is finding coloring from the
polynomial.

o Tensor network
Most tensor problems are NP-hard[Hillar and Lim, 2013]
Tensor network algorithms are also complexity hard
APPROXIMATION

— Tensor network Renormalization Group
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Quantum chromatic number

Graph coloring game(Classical chromatic number )

Alice wins the game if she can graph-color without interaction.

Quantum graph coloring game(xq)
Graph coloring game+Quantum pseudotelepathy(entanglement)

° C < Xq < X, m/nV( Gknown) — 1609Avis2006’ 18Cameron2007

Problem statement 1

Is there graph smaller than 18 whose quantum and classical
chromatic numbers are different?
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Thus spoke Ivan, Graph coloring is

, with some optimization methods,

o Eigenvalues of Laplacian[Wilf-Hoffman's bound]
L=Id—-A=(=d- u,)—>dave§,u1—max AX < dmax
max(A) = max (A/) Z min (A/) Z min ( ). [Nl] +1< X(G) < fbn

—in

o Defining coloring relation

matrix k coloring, vector k coloring(equivalent)

vector k + € coloring can be constructed in O(nlog(1) with
Cholesky factorization

(combinatorial optimization relaxation-maxcut
algorithms-goesmanwiliam)
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And thus spoke Ivan, Tensor RG is

Matrix Product State / PEPS
Tensor Train

600600

Tree Tensor Network /
Hierarchical Tucker
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Square lattice

o SVD decomposition
o Reduce rank
o Merge

o Calculate energy
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Square lattice[Cook,MIT project15]

501 —e— Tensor renormalization group

Free energy per unit site
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Figure 1: Square lattice tensor network renormalization group
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o O(3N) : coloring, O(2NN?) : MAXclique

o Set cover based approach

o Bipartite coloring optimization

o Greedy heuristic algorithm with logarithmic error bound
o Local search
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TRG on Honeycomb lattice

Geometrical replacement
SVD decomposition
Reduce rank

Merge
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Calculate energy
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Tensor network renormalization result (Honeycomb lattice)

Tensor renormalization group
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Figure 2: Honeycomb latice tensor network renormalization group
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There exist n€N such that VG, V(G) < n— |¢(G) — x(G)| =1
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1 = classical graph chromatic number
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Real Discussion

o What is the polynomial extension of quantum chromatic
number?

o What is the complexity class?

o How does it related to physical phenomenon?
o Can tensor network explain (quantum) communication
complexity?

o Nonlocal game(=graph coloring game)
o Bell's inequality(Tsirelson's conjecture)
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