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AdaGrad algorithm background

Suppose that we have a smooth loss function f :Rn →R, and the following
minimization problem:

f (x) → min
x∈X

Denote gk ≡∇ fx (xk ) and Gk = [gk gk−1 . . . g1], where Gk ∈Rn×k .
In this notation the k-th update step of full-matrix AdaGrad algorithm is:

xk+1 = xk −
η√

Gk GT
k +εI

∇ f (xk ),
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Problem formulation

GGT uses the preconditioner from full-matrix AdaGrad, with gradient
history attenuated exponentially as in Adam, and truncated to a window
parameter r .

Gk = [gk gk−1 . . . gk−r+1], where gk−t =βt
2∇̃ f

(
xk−t

)
, or 0 if t ≥ k

where β2 ≤ 1 and ∇̃ f
(
xk−t

)
is stochastic gradient.

GGT iterative step is:

xk+1 = xk −
η√

Gk GT
k +εI

∇̃ f (xk )
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Key Idea

The inversion of the large low-rank matrix GGT ∈Rn×n can be performed
by diagonalizing the small matrix GT G ∈Rr×r .
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Key Idea

[(
GG>

)1/2 +εI
]−1

v = 1

ε
v +Ur

[(
Σr +εIr

)−1 − 1

ε
Ir

]
U>

r v (∗)

The first term is none other than an SGD update step. The rest can be
computed by taking the eigendecomposition G>G = VΣ2

r V> , giving
Ur = GVΣ−1

r
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Iterative step matrix computation

So, there are several ways to compute matrix

[(
GG>

)1/2 +εI
]−1

which is

used at the iterative step:

direct: make eigendecomposition of symmetric matrix GG> to
compute its square root, and then compute the inverse

use (∗), obtain Ur and Σr via SVD decomposition of matrix G

use (∗), obtain Ur and Σr via eigendecomposition of matrix GT G as
was described on the previous slide

Lusine Airapetyan, Daniil Chesakov, Vsevolod Glazov, Evgeny Kovalev, Leonid Matyushin Skolkovo Institute of Science and Technology, Numerical Linear Algebra

Matrix Decomposition for Adaptive Optimization Regularization



Introduction Conclusion

Iterative step matrix computation

Lusine Airapetyan, Daniil Chesakov, Vsevolod Glazov, Evgeny Kovalev, Leonid Matyushin Skolkovo Institute of Science and Technology, Numerical Linear Algebra

Matrix Decomposition for Adaptive Optimization Regularization



Introduction Conclusion

Results representation: syntetic data 1

We compared different full- and diagonal-matrix adaptive optimizers and
SGD on the logistic regression problem on a set destibuted from an
extremely anisotropic (σ2

max /σ2
mi n ≈ 104) Gaussian distribution.
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Results representation: syntetic data 2

We compared same optimizers on the the same set but now we minimized

the barrier loss function: fi (w) =− log
(
w>xi + ci

)
where ci generated

uniformly from [0,1].
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Test on new data: MNIST

We compared modern state-of-the-art methods on a well known MNIST
dataset. We used DNN with two hidden fully connected layers with 256
nodes.
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Our modifications

Original paper propose us to use the following matrix Gt :

Gt =
(
g t g t−1 . . . g t−r+2 g t−r+1

)
Where g t−k =βk

2∇ f (xt−k ) (authors also suggest to use momentum with
parameter β1 ≈ 0.9 and put β2 = 1 on practice)
We considered several modifications of this method. The most important
one is to replace matrix Gt by the following matrix:

Gt =
(

1
r

∑t
j=t−r+1 g j

1
r−1

∑t−1
j=t−r+1 g j . . . 1

2

∑t−r+2
j=t−r+1 g j

∑t−r+1
j=t−r+1 g j

)
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Our modifications
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Combining GGT & SGD on MNIST

Combination of GGT and SGD converges faster in terms of iteration
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Timing GGT & SGD on MNIST

SGD converges faster in terms of time on image data
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Combining GGT & SGD on ill-defined problem

Combination doesn’t help for ill-defined problems. Pure GGT’s still better
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Timing GGT, SGD and GGT&SGD on ill-defined problem

Also In terms of time
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Discussion

As we can see, the GGT method works on the same performance level as
state-of-the-art optimizers such as Adam but it is better in case of
ill-posed problem. In our work we succesfuly explored ways to improve
this method. Further work could contain massive comparison of GGT
with second order methods, study of GGT parameters influence and
exploring new forms of matrix Gt .
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