Enhanced image approximation using shifted rank-1 reconstruction

Team 20 Gleb Balitskiy, Andrei Dzis, Nikolay Kozyrskiy, Nikolay Skuratov

Introduction

Low rank approximation of a data matrix $A \in \mathbb{C}^{M \times N}$ is of great interest in many applications. For example:

- 1. video denoising
- 2. object detection
- 3. subspace segmentation
- 4. seismic data processing
- 5. ...

Problem Statement

The problem can be formulated as follows: Given the matrix A and a small number L one seeks for vectors $u^1, \dots, u^L \in \mathbb{C}^M, v^1, \dots, v^L \in \mathbb{C}^N$ and coefficients $\sigma_1, \dots, \sigma_L$ such that

$$\left\|A - \sum_{k=1}^{L} \sigma_{k} u^{k} \left(v^{k}\right)^{*}\right\|_{F} \text{ is small.}$$

Problem statement

We seek to find an approximation of A using L rank-1 matrices $u^k (v^k)^*$ where the columns of each matrix can be shifted arbitrarily. Let $\lambda^k \in \mathbb{Z}^N$ and $S_{\lambda^k} : \mathbb{C}^{M \times N} \to \mathbb{C}^{M \times N}$ be the operator that circularly shifts the j-th column of a matrix by λ_j^k . Thus, the following problem can be proposed in terms of optimization problem:

$$\min_{\substack{\lambda^{1},\ldots,\lambda^{L}\\u^{1},\ldots,u^{L}\\v^{1},\ldots,v^{L}}} \left\| A - \sum_{k=1}^{L} S_{\lambda^{k}} \left(u^{k} \left(v^{k} \right)^{*} \right) \right\|_{F},$$

where $\overline{S_{\lambda^{k}}\left(u^{k}\left(v^{k}\right)^{*}\right)}$ a shifted rank-1 matrix.

Definition 1 (Shift operators): Denote the columns of the matrix A by $A = [a^1, ..., a^N]$. For $\lambda \in \mathbb{Z}^N$ define the shift operator $S_{\lambda} : \mathbb{C}^{M \times N} \to \mathbb{C}^{M \times N}$ as

$$S_{\lambda}A := \left[\tilde{S}^{\lambda_1}a^1, \ldots, \tilde{S}^{\lambda_N}a^N \right]$$

Theorem 1: For arbitrary $\lambda \in \mathbb{Z}^N$ the operator S_λ is linear. The inverse operators are given by $S_\lambda^{-1} = S_{-\lambda}$ Furthermore $||S_\lambda A||_F = ||A||_F$ holds. Given $\lambda' \in \mathbb{Z}^N$ we obtain $S_\lambda S_{\lambda'} = S_{\lambda+\lambda'}$.

Definition 2 (Shifted rank-1 matrices): We call $A \in C^{M \times N}$ a shifted rank-1 matrix, if $A = S_{\lambda}(u, v *)$ for some vectors $u \in \mathbb{C}^{M}, v \in \mathbb{C}^{N}$ and $\lambda \in \mathbb{Z}^{N}$

Having a closer look at iteration step:

$$\min_{\lambda,u,v} \|A - S_{\lambda}(uv^*)\|_{F} \rightarrow \min_{\lambda,u,v} \|S_{-\lambda}(A) - uv^*\|_{F}$$

Let $\sigma_1, \ldots, \sigma_K$ be the singular values of $S_{-\lambda}(A)$, then:

$$\|S_{-\lambda}(A) - uv^*\|_F^2 = \sum_{k=2}^K \sigma_k^2 = \|S_{-\lambda}(A)\|_F^2 - \sigma_1^2 = \|A\|_F^2 - \|S_{-\lambda}(A)\|_2^2$$

Thus, we can find λ by solving:

$$\max_{\lambda \in \mathbb{Z}^{N}} \|S_{-\lambda}(A)\|_{2}^{2}$$
(1)

So the shifted rank-1 approximation can be summarized as follows

Algorithm 1

1: Input: A, L

2: for k = 1, ..., L do

- 3: Solve (1) for λ^k
- 4: Calculate (1) for λ^k using SVD of $S_{-\lambda}(A)$
- 5: Update $A \leftarrow A S_{\lambda} \left(u^k \left(v^k \right)^* \right)$

6: end for

7: return λ^k , u^k , v^k for $k = 1, \ldots, L$

The fourth step of this algorithm is done by algorithm 3, using routines from algorithm 2.

Algorithm 2

1: Input: A

2: Set s = 1

- 3: while $s \neq 0$ do
- 4: Calculate \hat{u} the first left singular vector of \hat{A}

5: Set
$$B = \left| F^{-1}(\overline{\hat{u}} \odot \hat{A}) \right|$$

- 6: Subtract the first row of *B* from every row
- 7: Get the position (k, s) of the maximum in B
- 8: Shift the *k* -th column of A by -s
- 9: Update $\lambda_k \leftarrow \lambda_k + s$

10: end while

11: return λ

Algorithm 3

1: Input: A

2: Calculate $B = |F^{-1}(|\hat{A}| \odot \hat{A})|^2$

3: Set λ to the indices of the maximum values of *B*

in each column and update $A \leftarrow S_{-\lambda}A$

4: Update λ and A using Algorithm 2 with $|\hat{u}| = |\hat{u}^{opt}| \odot \text{phase}(\hat{u})$

5: Update λ and A using Algorithm 2

6: return λ

Obtained results

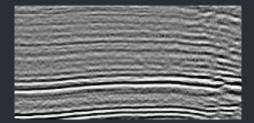


Figure: Original

Obtained results

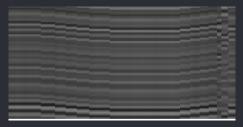
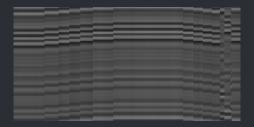


Figure:



Brief discussion of the results

- Shift operators and shifted rank-1 matrices were introduced.
- With their help we found a shifted rank-1 approximation of our input.
- Proposed approximation showing itself slightly worse than other methods.
- Parameters, obtained during the work of the algorithm, demonstrated, that they are very informative and could be used in extraction of crucial information.

Thank you for attention!