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Introduction

∙ 60% of Amazon sails come from recommendations
∙ Factorization methods are widely used in recommender systems
∙ SVD, SVD++ for 2D user-item matrices
∙ High Order SVD (HOSVD), High Order Orthogonal Iteraton (HOOI) for
tenzors (user-item with context information)
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Problem Statement

∙ HOSVD, HOOI have been never compared in terms of information
retrieval quality metrics such as DCG@k or Precision@k

∙ We decided to explore it
∙ MovieLens 10M
∙ user, movie, genre, rating

∙ Compute HOSVD, HOOI and calculate DCG@k and Precision@k
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Data Preprocessing

∙ Read data (64449 users, 10681 movies, 20 genres and 10m ratings)
∙ Split ratings data into to train and test by timestamp
∙ Form training matrix users×movies
∙ Form training tensor users×movies×genres
∙ Missing data is replaced by zeros
∙ Form testing data
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SVD for recommender system

∙ Start from a simple case - user-item matrix with ranks A
∙ Compute SVD decomposition:

A ≈ ÛΣV̂T = ÛΣ 1
2Σ

1
2 V̂T = UVT (1)

∙ To get the prediction of a rating that a user would give on an item:

âij = uivTj =
K∑
k=1

uikvkj (2)

∙ Optimal K is chosen by DCG@5 on validation
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Tucker Decomposition

Let T ∈ Cn×m×q, A ∈ Cn×r1 , B ∈ Cm×r2 , C ∈ Cq×r3 , G ∈ Cr1×r2×r3 . If

Tijk =
∑
s,t,u

gstuaisbjtcku

or
T =

∑
s,t,u

gstuAs ⊗ Bt ⊗ Cu, (3)

then this sum is called as Tucker’s decomposition of tensor T with
core tensor G.

6



HOSVD

The Tucker decomposition allows matrices to be arbitrary, while
HOSVD restricts matrices to be orthogonal.

Let A ∈ Cn1×n2×···×nd be a tensor of Tucker ranks (r1, r2, . . . , rd).
Computation:

∙ Let A0 = A
∙ for k = 1, 2, . . . ,d :

∙ Construct the standard factor-k flattening Ak−1
(k) ;

∙ Compute the (compact) singular value decomposition Ak−1
(k) = UkΣkVTk

and store the left singular vectors Uk ∈ Fnk×rk ;
∙ Set Ak = UHk ·k Ak−1.
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HOOI

HOOI is an iterative algorithm for computing low-rank
approximations to tensors.

Let A be an I1 × I2 × · · · × IT tensor and let r1, r2, . . . , rT be a set of
integers satisfying 1 ≤ rn ≤ In, for n = 1, . . . , T. The
Rank-{r1, r2, . . . , rT} approximation problem is to find a set of In × rn
matrices U(n) with orthogonal columns, n = 1, 2, . . . , T, and a
r1 × . . . rT core tensor B such than the optimization problem

min
U(p)

∥A− B ×1 U(1) ×2 U(2) . . .T U(T)∥2F (4)

is satisfied. It can be shown that the optimal B is given by

B = A×1 U(1)T ×2 U(2)T · · · ×T U(T)T (5)

and that it is sufficient to find U(n)’s satisfying UTU = IRn that
maximize ∥B∥2F . 8



HOOI

It successively solves the restricted optimization problems

min
U(p)

∥A− B ×1 U1 ×2 U2 · · · ×T UT∥2F, (6)

in which optimization is done over the p-th matrix U(p).

Algorithm

∙ Input: I× J× K tensor A and numbers r1, r2, r3.
∙ Output: L ∈ RI×r1 ,R ∈ RJ×r2 , V ∈ RK×r3 ,B.
∙ Choose initialR, V with orthonormal columns.
∙ Until convergence do:
∙ C = A×2 R, T×3 VT, L = SVD(r1, C(1))

∙ D = A×1 LT ×3 VT, R = SVD(r2,D(2))

∙ M = A×1 LT ×2 RT, V = SVD(r3,M(3))

∙ B = M×3 VT
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Metrics

∙ NDCG@k: Normalized Discounted Cumulative Gain

DCGk :=
k∑
i

Ri
log2(Pi + 1)

IDCGk :=
|REL|∑
i

2Ri − 1
log2(Pi + 1)

nDCGk :=
DCGk
IDCGk

where: |REL| is the cardinality of set of relevant documents
Ri - rating of ith movie
Pi - position of ith movie in prediction
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Metrics

∙ Precision@k
Precision at k is the proportion of recommended items in the
top-k set that are relevant

Precision@k := |REL| ∩ |RET|
|RET|

where |RET| is the cardinality of set of retrieved documents
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Results

Example of SVD-based recommendation:

∙ Sin City. Rated: 4.0
∙ American History X. Rated: 4.0
∙ Traffic. Rated: 4.0
∙ Green Mile. Rated: 4.0
∙ Road to Perdition. Rated: 4.0
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Results

Figure: Quality metrics

13



Conclusion

∙ Different factorization models are built for MovieLens 10M dataset
∙ Comparison of quality metrics
∙ Since we assumed in metric evaluation that rating of seen film (i.e.
rating from learn) forced to be zero, tensor decompositions tend
to memorize movies from learn (remember that we set missing
rating to be zero).
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