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Homomorphic Encryption Overview

Encryption/Decryption

C1,2 = Enc(µ1,2, pk) µ1,2 = Dec(C1,2, sk)

Addition

C1 � C2 ⇔ µ1 + µ2

Multiplication

C1 � C2 ⇔ µ1 × µ2

This problem was proposed in 1978
but the solution was found only in 2009 (Gentry)
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Applications

1 Delegated computing

2 Zero-knowledge proof

3 Holy grail of cryptography
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Eigenvector scheme

1 Public Key
P ∈ Zn×n

q

2 Secret Key
s ∈ Zn

q : sP = 0

Enc(m) = PR + mI = C ∈ Zn×n
q ,where R ← Zn

q

Dec(C ) = sC = s(PR + mI ) = ms

It’s not an Encryption Scheme since s is an exact eigenvector!
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Tweaked eigenvector scheme

1 Secret Key
s = [s ′ − 1], s ′ ← Zn−1

q , sP ≈ 0

2 Public Key

P =

[
P ′

s ′P ′ + e

]
,with P ′ ← Zn−1×m

q ,

e is a small error

Enc(µ) = PR + µI = C ∈ Zn×m
q ,where R ← {0, 1}n×m

Dec(C ) = sC = s(PR + µI ) = −eR + µs

if µ = 0, ||sC ||∞ = || − eR||∞ is small, if µ = 1, ||sC ||∞ ≈ ||µs||∞
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Approximate eigenvector scheme

1 Secret Key
s = [s ′ − 1], s ′ ← Zn−1

q , sP ≈ 0

2 Public Key

P =

[
P ′

s ′P ′ + e

]
,with P ′ ← Zn−1×m

q ,

e is a small error

Enc(µ) = PR + µG = C ∈ Zn×m
q ,where R ← {0, 1}n×m

Dec(C ) = sC = s(PR + µG ) = −eR + µsG

if µ = 0, ||sC ||∞ = ||eR||∞ ≤ m‖e‖∞ is small
if µ = 1, ||sC ||∞ ≈ ||sG ||∞
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Primitive matrix

G = I ⊗ g , g =
[
1 2 ... 2[log q]

]
gv = a, a ∈ Zq - solution is bit decomposition of a

Gv = a, a ∈ Zn
q where v ∈ Zm

G−1 − expands a into component-wise binary decomposition
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Errors accumulation

Addition

C1 � C2 ⇔ s(C1 + C2) = (e1 + e2)︸ ︷︷ ︸
new error

+ (µ1 + µ2)︸ ︷︷ ︸
result

sG

Multiplication

C1 � C2 ⇔ s(C1G
−1(C2)) = (eG−1(C2) + µ1e2)︸ ︷︷ ︸

new error

+µ1µ2︸ ︷︷ ︸
result

sG

Error bound for multiplication

‖emult‖∞ ≤ m‖e1‖∞ + µ1‖e1‖∞
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Circuits

NAND

1− µ1µ2

XOR

µ1 + µ2 − 2µ1µ2
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Error growth for circuits

NAND (Shiffer stroke)

NAND(C1,C2) = (I − C1G
−1C−12 ) is fuctionally complete, so any boolean

function can be done via NAND

NAND Error

We can decode NAND curcuit with depth L when q
B > 8(N + 1)L

B - is bound for initial error

Bootstraping

In theory error can be reduced with technique called bootstrapping, but it
is quite sophisticated
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Error growth
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Semi-live demo, one bit encryption
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Semi-live demo, full-adder
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Conclusion

1 The described scheme was implemented

2 Matrix multiplication was optimized

3 Experiments were carried out

4 The scheme was proved to be inefficient now
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Appendix A: Learning With Error

Theorem (search-LWE problem is computationally hard)

The search-LWE problem is to find the secret s given access to On
s .

1 a← Zn
q, is chosen freshly at random

2 s ∈ Zn
q, is a secret (the same for every sample)

3 e ← χ, is chosen freshly

Oracle On
s which outputs samples of the form (a, 〈a, s〉+ e)
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