Given matrix $A=A^*>0$ we calculate its Cholesky decomposition $A = LL^*$.
Factor $L$ can be dense even if $A$ is sparse:
$$ \begin{bmatrix} * & * & * & * \\ * & * & & \\ * & & * & \\ * & & & * \end{bmatrix} = \begin{bmatrix} * & & & \\ * & * & & \\ * & * & * & \\ * & * & * & * \end{bmatrix} \begin{bmatrix} * & * & * & * \\ & * & * & * \\ & & * & * \\ & & & * \end{bmatrix} $$How to make factors sparse, i.e. to minimize the fill-in?
We need to find a permutation of indices so that factors are sparse, i.e. we build Cholesky factorisation of $PAP^\top$, where $P$ is a permutation matrix.
For the example from the previous slide
$$ P \begin{bmatrix} * & * & * & * \\ * & * & & \\ * & & * & \\ * & & & * \end{bmatrix} P^\top = \begin{bmatrix} * & & & * \\ & * & & * \\ & & * & * \\ * & * & * & * \end{bmatrix} = \begin{bmatrix} * & & & \\ & * & & \\ & & * & \\ * & * & * & * \end{bmatrix} \begin{bmatrix} * & & & * \\ & * & & * \\ & & * & * \\ & & & * \end{bmatrix} $$where
$$ P = \begin{bmatrix} & & & 1 \\ & & 1 & \\ & 1 & & \\ 1 & & & \end{bmatrix} $$import numpy as np
import scipy.sparse as spsp
import scipy.sparse.linalg as spsplin
import scipy.linalg as splin
import matplotlib.pyplot as plt
%matplotlib inline
A = spsp.coo_matrix((np.random.randn(10), ([0, 0, 0, 0, 1, 1, 2, 2, 3, 3],
[0, 1, 2, 3, 0, 1, 0, 2, 0, 3])))
print("Original matrix")
plt.spy(A)
plt.show()
lu = spsplin.splu(A.tocsc(), permc_spec="NATURAL")
print("L factor")
plt.spy(lu.L)
plt.show()
print("U factor")
plt.spy(lu.U)
plt.show()
print("Column permutation:", lu.perm_c)
print("Row permutation:", lu.perm_r)
then
$$ PAP^\top = \begin{bmatrix} A_{11} & 0 & 0 \\ 0 & A_{22} & 0 \\ A_{31} & A_{32} & A_{33} - A_{31}A_{11}^{-1} A_{13} - A_{32}A_{22}^{-1}A_{23} \end{bmatrix} \begin{bmatrix} I & 0 & A_{11}^{-1}A_{13} \\ 0 & I & A_{22}^{-1}A_{23} \\ 0 & 0 & I\end{bmatrix} $$Graphs of $\begin{bmatrix} * & * & * & * \\ * & * & & \\ * & & * & \\ * & & & * \end{bmatrix}$ and $\begin{bmatrix} * & & & * \\ & * & & * \\ & & * & * \\ * & * & * & * \end{bmatrix}$ have the following form:
Definition. A separator in a graph $G$ is a set $S$ of vertices whose removal leaves at least two connected components.
Separator $S$ gives the following ordering for an $N$-vertex graph $G$:
Separator for the 2D Laplacian matrix
$$ A_{2D} = I \otimes A_{1D} + A_{1D} \otimes I, \quad A_{1D} = \mathrm{tridiag}(-1, 2, -1), $$is as follows
Once we have enumerated first indices in $\alpha$, then in $\beta$ and separators indices in $\sigma$ we get the following matrix
$$ PAP^\top = \begin{bmatrix} A_{\alpha\alpha} & & A_{\alpha\sigma} \\ & A_{\beta\beta} & A_{\beta\sigma} \\ A_{\sigma\alpha} & A_{\sigma\beta} & A_{\sigma\sigma}\end{bmatrix} $$which has arrowhrad structure.
For blocks $A_{\alpha\alpha}$, $A_{\beta\beta}$ we continue splitting recursively.
When the recursion is done, we need to eliminate blocks $A_{\sigma\alpha}$ and $A_{\sigma\beta}$.
This makes block in the position of $A_{\sigma\sigma}\in\mathbb{R}^{n\times n}$ dense.
Calculation of Cholesky of this block costs $\mathcal{O}(n^3) = \mathcal{O}(N^{3/2})$, where $N = n^2$ is the total number of nodes.
So, the complexity is $\mathcal{O}(N^{3/2})$
All of them have interfaces for C/C++, Fortran and Matlab
Computing separators is not a trivial task.
Graph partitioning heuristics has been an active research area for many years, often motivated by partitioning for parallel computation.
Existing approaches:
The idea of spectral partitioning goes back to Miroslav Fiedler, who studied connectivity of graphs (paper).
We need to split the vertices into two sets.
Consider +1/-1 labeling of vertices and the cost
$$E_c(x) = \sum_{j} \sum_{i \in N(j)} (x_i - x_j)^2, \quad N(j) \text{ denotes set of neighbours of a node } j. $$We need a balanced partition, thus
$$\sum_i x_i = 0 \quad \Longleftrightarrow \quad x^\top e = 0, \quad e = \begin{bmatrix}1 & \dots & 1\end{bmatrix}^\top,$$and since we have +1/-1 labels, we have
$$\sum_i x^2_i = n \quad \Longleftrightarrow \quad \|x\|_2^2 = n.$$Cost $E_c$ can be written as (check why)
$$E_c = (Lx, x)$$where $L$ is the graph Laplacian, which is defined as a symmetric matrix with
$$L_{ii} = \mbox{degree of node $i$},$$$$L_{ij} = -1, \quad \mbox{if $i \ne j$ and there is an edge},$$and $0$ otherwise.
Minimization of $E_c$ with the mentioned constraints leads to a partitioning that tries to minimize number of edges in a separator, while keeping the partition balanced.
We now relax the integer quadratic programming to the continuous quadratic programming
$$E_c(x) = (Lx, x)\to \min_{\substack{x^\top e =0, \\ \|x\|_2^2 = n}}$$Since $e$ is the eigenvector, corresponding to the smallest eigenvalue, on the space $x^\top e =0$ we get the second minimal eigevalue.
The sign $x_i$ indicates the partitioning.
In computations, we need to find out, how to find this second minimal eigenvalue –– we at least know about power method, but it finds the largest. We will discuss iterative methods for eigenvalue problems later in our course.
This is the main goal of the iterative methods for large-scale linear problems, and can be achieved via few matrix-by-vector products.
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import networkx as nx
kn = nx.read_gml('http://nla.skoltech.ru/lectures/files/karate.gml')
print("Number of vertices = {}".format(kn.number_of_nodes()))
print("Number of edges = {}".format(kn.number_of_edges()))
nx.draw_networkx(kn, node_color="red") #Draw the graph
import scipy.sparse.linalg as spsplin
Laplacian = nx.laplacian_matrix(kn).asfptype()
plt.spy(Laplacian, markersize=5)
plt.title("Graph laplacian")
plt.axis("off")
plt.show()
eigval, eigvec = spsplin.eigsh(Laplacian, k=2, which="SM")
print("The 2 smallest eigenvalues =", eigval)
plt.scatter(np.arange(len(eigvec[:, 1])), np.sign(eigvec[:, 1]))
plt.show()
print("Sum of elements in Fiedler vector = {}".format(np.sum(eigvec[:, 1].real)))
nx.draw_networkx(kn, node_color=np.sign(eigvec[:, 1]))
Definition. The algebraic connectivity of a graph is the second-smallest eigenvalue of the Laplacian matrix.
Claim. The algebraic connectivity of a graph is greater than 0 if and only if a graph is a connected graph.
The idea is to eliminate rows and/or columns with fewer non-zeros, update fill-in and then repeat
Efficient implementation is an issue (adding/removing elements).
Current champion is "approximate minimal degree" by Amestoy, Davis, Duff.
It is suboptimal even for 2D problems
In practice, it often wins for medium-sized problems
SciPy sparse package uses minimal ordering approach for different matrices ($A^{\top}A$, $A + A^{\top}$)