$ax^2 + bx + c = 0$

$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$x_1 + x_2 = - \frac{b}{a}$

$x_1x_2 = \frac{c}{a}$

Let us write a little expressions for our roots

$$ \frac{1000.001 \pm \sqrt{1000.001^2 - 4}}{2} = \frac{1000.001 \pm 999.999}{2} = 1000 \text{ and } 0.00099999999$$

But if we have only 5 significant digits we have to truncate out exact answer to the form

$$ \frac{1000.001 \pm 999.999}{2} \approx \frac{1000.00 \pm 999.99}{2} = 999.95 \text{ and } 0.005$$

BUT!

$$ \frac{1}{999.95} = 0.00100005 $$

is much more accurate root!

$$ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$