thus it has squared condition number, so direct minimization of the residual by standard optimization methods is rarely used.
Let $A = A^* > 0$, then the following functional
$$\Phi(x) = (Ax, x) - 2(f, x)$$is called energy functional.
Since it is strictly convex, it has unique local minimum, which is also global
Its global minimum $x_*$ satisfies
Indeed,
$$\nabla \Phi = 2(Ax - f).$$and the first order optimality condition $\nabla \Phi (x_*) = 0$ yields
$$A x_* = f.$$where $c$ is the vector of coefficients.
subject to $$x = x_0 + Y c,$$
where $Y=[y_1,\dots,y_M]$ is $n \times M$ and vector $c$ has length $M$.
which is an $M \times M$ linear system with symmetric positive definite matrix if $Y$ has full column rank.
But how to choose $Y$?
import numpy as np
n = 100
A = np.random.randn(n, n)
Q, _ = np.linalg.qr(A)
k = 50
A = Q.T @ np.diag([1e-6] * k + list(np.random.rand(n-k))) @ Q
x_true = np.random.randn(n)
rhs = A @ x_true
M = n - k
Y = np.random.randn(n, M)
A_proj = Y.T @ A @ Y
rhs_proj = Y.T @ rhs
print(A_proj.shape)
c = np.linalg.solve(A_proj, rhs_proj)
x_proj = Y @ c
print(np.linalg.norm(A @ x_proj - rhs) / np.linalg.norm(rhs))
(50, 50) 7.638732272527391e-05
In the Krylov subspace we generate the whole subspace from a single vector $r_0 = f - Ax_0$:
$$y_0\equiv k_0 = r_0, \quad y_1\equiv k_1 = A r_0, \quad y_2\equiv k_2 = A^2 r_0, \ldots, \quad y_{M-1}\equiv k_{M-1} = A^{M-1} r_0.$$This gives the Krylov subpace of the $M$-th order
$$\mathcal{K}_M(A, r_0) = \mathrm{Span}(r_0, Ar_0, \ldots, A^{M-1} r_0).$$The natural basis in the Krylov subspace is very ill-conditioned, since
$$k_i = A^i r_0 \rightarrow \lambda_\max^i v,$$where $v$ is the eigenvector, corresponding to the maximal eigenvalue of $A$, i.e. $k_i$ become more and more collinear for large $i$.
import numpy as np
import matplotlib.pyplot as plt
import scipy.sparse as spsp
%matplotlib inline
n = 100
ex = np.ones(n);
A = spsp.spdiags(np.vstack((-ex, 2*ex, -ex)), [-1, 0, 1], n, n, 'csr');
f = np.ones(n)
x0 = np.random.randn(n)
subspace_order = 5
krylov_vectors = np.zeros((n, subspace_order))
krylov_vectors[:, 0] = f - A.dot(x0)
for i in range(1, subspace_order):
krylov_vectors[:, i] = A.dot(krylov_vectors[:, i-1])
s = np.linalg.svd(krylov_vectors, compute_uv=False)
print("Condition number = {}".format(s.max() / s.min()))
Condition number = 5474.648345398377
Solution: Compute orthogonal basis in the Krylov subspace.
In order to have stability, we first orthogonalize the vectors from the Krylov subspace using Gram-Schmidt orthogonalization process (or, QR-factorization).
$$K_j = \begin{bmatrix} r_0 & Ar_0 & A^2 r_0 & \ldots & A^{j-1} r_0\end{bmatrix} = Q_j R_j, $$and the solution will be approximated as
$$x \approx x_0 + Q_j c.$$Statement. The Krylov matrix $K_j$ satisfies an important recurrent relation (called Arnoldi relation)
$$A Q_j = Q_j H_j + h_{j, j-1} q_j e^{\top}_{j-1},$$where $H_j$ is upper Hessenberg, and $Q_{j+1} = [q_0,\dots,q_j]$ has orthogonal columns that spans columns of $K_{j+1}$.
Let us prove it (consider $j = 3$ for simplicity):
$$A \begin{bmatrix} k_0 & k_1 & k_2 \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} = \begin{bmatrix} k_0 & k_1 & k_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & \alpha_0 \\ 1 & 0 & \alpha_1 \\ 0 & 1 & \alpha_2 \\ \end{bmatrix} + \begin{bmatrix} 0 & 0 & k_3 - \alpha_0 k_0 - \alpha_1 k_1 - \alpha_2 k_2 \end{bmatrix}, $$where $\alpha_s$ will be selected later. Denote $\widehat{k}_3 = k_3 - \alpha_0 k_0 - \alpha_1 k_1 - \alpha_2 k_2$.
In the matrix form,
$$A K_3 = K_3 Z + \widehat k_3 e^{\top}_2,$$
where $Z$ is the lower shift matrix with the last column $(\alpha_0,\alpha_1,\alpha_2)^T$, and $e_2$ is the last column of the identity matrix.
Let
$$K_3 = Q_3 R_3$$
be the QR-factorization. Then,
$$A Q_3 R_3 = Q_3 R_3 Z + \widehat{k}_3 e^{\top}_2,$$
$$ A Q_3 = Q_3 R_3 Z R_3^{-1} + \widehat{k}_3 e^{\top}_2 R_3^{-1}.$$
Note that
$$e^{\top}_2 R_3^{-1} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix} = \gamma e^{\top}_2,$$and
$$R_3 Z R_3^{-1} = \begin{bmatrix} * & * & * \\* & * & * \\ 0 & * & * \\ \end{bmatrix},$$
in the general case it will be an upper Hessenberg matrix $H$, i.e. a matrix that
$$H_{ij} = 0, \quad \mbox{if } i > j + 1.$$Let $Q_j$ be the orthogonal basis in the Krylov subspace, then we have almost the Arnoldi relation
$$A Q_j = Q_j H_j + \gamma\widehat{k}_j e^{\top}_{j-1},$$where $H_j$ is an upper Hessenberg matrix, and
$$\widehat{k}_j = k_j - \sum_{s=0}^{j-1} \alpha_s k_s.$$We select $\alpha_s$ in such a way that
$$Q^*_j \widehat{k}_j = 0.$$Then, $\widehat{k}_j = h_{j, j-1} q_j,$ where $q_j$ is the last column of $Q_{j+1}$.
We have
$$A Q_j = Q_j H_j + h_{j, j-1} q_j e^{\top}_{j-1}.$$This is the crucial formula for the efficient generation of such subspaces.
For non-symmetric case, it is just modified Gram-Schmidt.
For the symmetric case, we have a much simpler form (Lanczos process).
If $A = A^*$, then
$$Q^*_j A Q_j = H_j, $$thus $H_j$ is hermitian, and thus it is tridiagonal, $H_j = T_j$.
This gives a short-term recurrence relation to generate the Arnoldi vectors $q_j$ without full orthogonalization.
In order to get $q_j$, we need to compute just the last column of
$$t_{j, j-1} q_j = (A Q_j - Q_j T_j) e_{j-1} = A q_{j-1} - t_{j-1, j-1} q_{j-1} - t_{j-2, j-1} q_{j-2}. $$The coefficients $\alpha_j = t_{j-1, j-1}$ and $\beta_j = t_{j-2, j-1}$ can be recovered from orthogonality constraints
$(q_j, q_{j-1}) = 0, \quad (q_j, q_{j-2}) = 0$
All the other constraints will be satisfied automatically!!
And we only need to store two vectors to get the new one.
We can now get from the Lanczos recurrence to the famous conjugate gradient method.
We have for $A = A^* > 0$
$$A Q_j = Q_j T_j + T_{j, j-1} q_j.$$Recall that when we minimize energy functional in basis $Y$ we get a system $Y^* A Y c = Y^* f,$. Here $Y = Q_j$, so the approximate solution of $Ax \approx f$ with $x_j = x_0 + Q_j c_j$ can be found by solving a small system
$$Q^*_j A Q_j c_j = T_j c_j = Q^*_j r_0 .$$Since $f$ is the first Krylov subspace, then Note!!! (recall what the first column in $Q_j$ is)
$$Q^*_j r_0 = \Vert r_0 \Vert_2^2 e_0 = \gamma e_0.$$We have a tridiagonal system of equations for $c$:
$$T_j c_j = \gamma e_0$$and $x_j = Q_j c_j$.
We could stop at this point, but we want short recurrent formulas instead of solving linear system with matrix $T_j$ at each step.
Derivation of the following update formulas is not required on the oral exam!
Since $A$ is positive definite, $T_j$ is also positive definite, and it allows an LU decomposition
$T_j = L_j U_j$, where $L_j$ is a bidiagonal matrix with ones on the diagonal, $U_j$ is a upper bidiagonal matrix.
We need to define one subdiagonal in $L$ (with elements $c_1, \ldots, c_{j-1}$), main diagonal of $U_j$ (with elements $d_0, \ldots, d_{j-1}$ and superdiagonal of $U_j$ (with elements $b_1, \ldots, b_{j-1}$).
They have convenient recurrences:
and
$$z_j = \begin{bmatrix} z_{j-1} \\ \xi_{j} \end{bmatrix}.$$and $q_j$ are found from the Lanczos relation (see slides above).
We have the direct Lanczos method, where we store
$$p_{j-1}, q_j, x_{j-1}$$to get a new estimate of $x_j$.
The main problem is with $q_j$: we have the three-term recurrence, but in the floating point arithmetic the orthogonality is can be lost, leading to numerical errors.
Let us do some demo.
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import scipy as sp
import scipy.sparse as spsp
from scipy.sparse import csc_matrix
n = 128
ex = np.ones(n);
A = spsp.spdiags(np.vstack((ex, -2*ex, ex)), [-1, 0, 1], n, n, 'csr');
rhs = np.ones(n)
nit = 64
q1 = rhs/np.linalg.norm(rhs)
q2 = A.dot(q1)
q2 = q2 - np.dot(q2, q1)*q1
q2 = q2/np.linalg.norm(q2)
qall = [q1, q2]
for i in range(nit):
qnew = A.dot(qall[-1])
qnew = qnew - np.dot(qnew, qall[-1])*qall[-1]
qnew = qnew/np.linalg.norm(qnew)
qnew = qnew - np.dot(qnew, qall[-2])*qall[-2]
qnew = qnew/np.linalg.norm(qnew)
qall.append(qnew)
qall_mat = np.vstack(qall).T
print(np.linalg.norm(qall_mat.T.dot(qall_mat) - np.eye(qall_mat.shape[1])))
1.6432256263275
Instead of $q_j$ (last vector in the modified Gram-Schmidt process), it is more convenient to work with the residual
$$r_j = f - A x_j.$$The resulting recurrency has the form
$x_j = x_{j-1} + \alpha_{j-1} p_{j-1}$
$r_j = r_{j-1} - \alpha_{j-1} A p_{j-1}$
$p_j = r_j + \beta_j p_{j-1}$.
Hence the name conjugate gradient: to the gradient $r_j$ we add a conjugate direction $p_j$.
We have orthogonality of residuals (check!):
$$(r_i, r_j) = 0, \quad i \ne j$$and A-orthogonality of conjugate directions (check!):
$$ (A p_i, p_j) = 0,$$which can be checked from the definition.
The equations for $\alpha_j$ and $\beta_j$ can be now defined explicitly from these two properties.
We have $(r_{j}, r_{j-1}) = 0 = (r_{j-1} - \alpha_{j-1} A p_{j-1}, r_{j-1})$,
thus
$$\alpha_{j-1} = \frac{(r_{j-1}, r_{j-1})}{(A p_{j-1}, r_{j-1})} = \frac{(r_{j-1}, r_{j-1})}{(A p_{j-1}, p_{j-1} - \beta_{j-1}p_{j-2})} = \frac{(r_{j-1}, r_{j-1})}{(A p_{j-1}, p_{j-1})}.$$In the similar way, we have
$$\beta_{j-1} = \frac{(r_j, r_j)}{(r_{j-1}, r_{j-1})}.$$Recall that
$x_j = x_{j-1} + \alpha_{j-1} p_{j-1}$
$r_j = r_{j-1} - \alpha_{j-1} A p_{j-1}$
$p_j = r_j + \beta_j p_{j-1}$.
Only one matrix-by-vector product per iteration.
More details here: https://www.siam.org/meetings/la09/talks/oleary.pdf
When Hestenes worked on conjugate bases in 1936, he was advised by a Harvard professor that it was too obvious for publication
We need to store 3 vectors.
Since it generates $A$-orthogonal sequence $p_1, \ldots, p_N$, after $n$ steps it should stop (i.e., $p_{N+1} = 0$.)
In practice it does not have this property in finite precision, thus after its invention in 1952 by Hestens and Stiefel it was labeled unstable.
In fact, it is a brilliant iterative method.
Energy functional can be written as
$$(Ax, x) - 2(f, x) = (A (x - x_*), (x - x_*)) - (Ax _*, x_*),$$where $A x_* = f$. Up to a constant factor,
$$ (A(x - x_*), (x -x_*)) = \Vert x - x_* \Vert^2_A$$is the A-norm of the error.
The CG method computes $x_k$ that minimizes the energy functional over the Krylov subspace, i.e. $x_k = p(A)f$, where $p$ is a polynomial of degree $k+1$, so
$$\Vert x_k - x_* \Vert_A = \inf\limits_{p} \Vert \left(p(A) - A^{-1}\right) f \Vert_A. $$Using eigendecomposition of $A$ we have
$$A = U \Lambda U^*, \quad g = U^* f,$$and
$\Vert x - x_* \Vert^2_A = \displaystyle{\inf_p} \Vert \left(p(\Lambda) - \Lambda^{-1}\right) g \Vert_\Lambda^2 = \displaystyle{\inf_p} \displaystyle{\sum_{i=1}^n} \frac{(\lambda_i p(\lambda_i) - 1)^2 g^2_i}{\lambda_i} = \displaystyle{\inf_{q, q(0) = 1}} \displaystyle{\sum_{i=1}^n} \frac{q(\lambda_i)^2 g^2_i}{\lambda_i} $
Selection of the optimal $q$ depends on the eigenvalue distribution.
We have
$$\Vert x - x_* \Vert^2_A \leq \sum_{i=1}^n \frac{g^2_i}{\lambda_i} \inf_{q, q(0)=1} \max_{j} q({\lambda_j})^2$$The first term is just
$$\sum_{i=1}^n \frac{g^2_i}{\lambda_i} = (A^{-1} f, f) = \Vert x_* \Vert^2_A.$$And we have relative error bound
$$\frac{\Vert x - x_* \Vert_A }{\Vert x_* \Vert_A} \leq \inf_{q, q(0)=1} \max_{j} |q({\lambda_j})|,$$so if matrix has only 2 different eigenvalues, then there exists a polynomial of degree 2 such that $q({\lambda_1}) =q({\lambda_2})=0$, so in this case CG converges in 2 iterations.
If eigenvalues are clustered and there are $l$ outliers, then after first $\mathcal{O}(l)$ iterations CG will converge as if there are no outliers (and hence the effective condition number is smaller).
The intuition behind this fact is that after $\mathcal{O}(l)$ iterations the polynomial has degree more than $l$ and thus is able to zero $l$ outliers. </font>
Let us find another useful upper-bound estimate of convergence. Since
$$ \inf_{q, q(0)=1} \max_{j} |q({\lambda_j})| \leq \inf_{q, q(0)=1} \max_{\lambda\in[\lambda_\min,\lambda_\max]} |q({\lambda})| $$The last term is just the same as for the Chebyshev acceleration, thus the same upper convergence bound holds:
$$\frac{\Vert x_k - x_* \Vert_A }{\Vert x_* \Vert_A} \leq \gamma \left( \frac{\sqrt{\mathrm{cond}(A)}-1}{\sqrt{\mathrm{cond}(A)}+1}\right)^k.$$As a result, better convergence than Chebyshev acceleration, but slightly higher cost per iteration.
CG is the method of choice for symmetric positive definite systems:
Before we discussed symmetric positive definite systems. What happens if $A$ is non-symmetric?
We can still orthogonalize the Krylov subspace using Arnoldi process, and get
$$A Q_j = Q_j H_j + h_{j,j-1}q_j e^{\top}_{j-1}.$$Let us rewrite the latter expression as
$$ A Q_j = Q_j H_j + h_{j,j-1}q_j e^{\top}_{j-1} = Q_{j+1} \widetilde H_j, \quad \widetilde H_j = \begin{bmatrix} h_{0,0} & h_{0,1} & \dots & h_{0,j-2} & h_{0,j-1} \\ h_{1,0} & h_{1,1} & \dots & h_{1,j-2} & h_{1,j-1} \\ 0& h_{2,2} & \dots & h_{2,j-2} & h_{2,j-1} \\ 0& 0 & \ddots & \vdots & \vdots \\ 0& 0 & & h_{j,j-1} & h_{j-1,j-1} \\ 0& 0 & \dots & 0 & h_{j,j-1}\end{bmatrix}$$Then, if we need to minimize the residual over the Krylov subspace, we have
$$x_j = x_0 + Q_j c_j $$and $x_j$ has to be selected as
$$ \Vert A x_j - f \Vert_2 = \Vert A Q_j c_j - r_0 \Vert_2 \rightarrow \min_{c_j}.$$Using the Arnoldi recursion, we have
$$ \Vert Q_{j+1} \widetilde H_j c_j - r_0 \Vert_2 \rightarrow \min_{c_j}.$$Using the orthogonal invariance under multiplication by unitary matrix, we get
$$ \Vert \widetilde H_j c_j - \gamma e_0 \Vert_2 \rightarrow \min_{c_j},$$where we have used that $Q^*_{j+1} r_0 = \gamma e_0.$
This is just a linear least squares with $(j+1)$ equations and $j$ unknowns.
The matrix is also upper Hessenberg, thus its QR factorization can be computed in a very cheap way.
This allows the computation of $c_j$. This method is called GMRES (generalized minimal residual)
import scipy.sparse.linalg as la
from scipy.sparse import csc_matrix, csr_matrix
import numpy as np
import matplotlib.pyplot as plt
import time
%matplotlib inline
n = 150
ex = np.ones(n);
lp1 = sp.sparse.spdiags(np.vstack((ex, -2*ex, ex)), [-1, 0, 1], n, n, 'csr');
e = sp.sparse.eye(n)
A = sp.sparse.kron(lp1, e) + sp.sparse.kron(e, lp1)
A = csr_matrix(A)
rhs = np.ones(n * n)
plt.figure(figsize=(10, 5))
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
for restart in [5, 40, 200]:
hist = []
def callback(rk):
hist.append(np.linalg.norm(rk) / np.linalg.norm(rhs))
st = time.time()
sol = la.gmres(A, rhs, x0=np.zeros(n*n), maxiter=200, restart=restart, callback=callback, tol=1e-16)
current_time = time.time() - st
ax1.semilogy(np.array(hist), label='rst={}'.format(restart))
ax2.semilogy([current_time * i / len(hist) for i in range(len(hist))], np.array(hist), label='rst={}'.format(restart))
ax1.legend(loc='best')
ax2.legend(loc='best')
ax1.set_xlabel("Number of outer iterations", fontsize=20)
ax2.set_xlabel("Time, sec", fontsize=20)
ax1.set_ylabel(r"$\frac{||r_k||_2}{||rhs||_2}$", fontsize=20)
ax2.set_ylabel(r"$\frac{||r_k||_2}{||rhs||_2}$", fontsize=20)
plt.sca(ax1)
plt.yticks(fontsize=20)
plt.sca(ax2)
plt.yticks(fontsize=20)
f.tight_layout()
<Figure size 720x360 with 0 Axes>
import scipy.sparse.linalg as la
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# Example from http://www.caam.rice.edu/~embree/39961.pdf
A = np.array([[1, 1, 1],
[0, 1, 3],
[0, 0, 1]]
)
rhs = np.array([2, -4, 1])
x0 = np.zeros(3)
for restart in [1, 2, 3]:
hist = []
def callback(rk):
hist.append(np.linalg.norm(rk)/np.linalg.norm(rhs))
_ = la.gmres(A, rhs, x0=x0, maxiter=20, restart=restart, callback=callback)
plt.semilogy(np.array(hist), label='rst={}'.format(restart))
plt.legend(fontsize=22)
plt.xlabel("Number of outer iterations", fontsize=20)
plt.ylabel(r"$\frac{||r_k||_2}{||rhs||_2}$", fontsize=20)
plt.xticks(fontsize=16)
plt.yticks(fontsize=20)
plt.tight_layout()
from IPython.core.display import HTML
def css_styling():
styles = open("./styles/custom.css", "r").read()
return HTML(styles)
css_styling()