where $a_m \in \mathbb{C}^{n\times 1}$.
Definition. Vectors $a_i$ are called linearly dependent, if there exist simultaneously non-zero coefficients $x_i$ such that
$$\sum_i a_i x_i = 0,$$or in the matrix form
$$ Ax = 0, \quad \Vert x \Vert \ne 0. $$In this case, we say that the matrix $A$ has a non-trivial nullspace (or kernel) denoted by $N(A)$ (or $\text{ker}(A)$).
Vectors that are not linearly dependent are called linearly independent.
A linear space spanned by vectors $\{a_1, \ldots, a_m\}$ is defined as all possible vectors of the form
$$ \mathcal{L}(a_1, \ldots, a_m) = \left\{y: y = \sum_{i=1}^m a_i x_i, \, \forall x_i, \, i=1,\dots, n \right\}, $$In the matrix form, the linear space is a set of all $y$ such that
$$y = A x.$$This set is also called the range (or image) of the matrix, denoted by $\text{range}(A)$ (or $\text{im}(A)$) respectively.
The dimension of a linear space $\text{im}(A)$ denoted by $\text{dim}\, \text{im} (A)$ is the minimal number of vectors required to represent each vector from $\text{im} (A)$.
The dimension of $\text{im}(A)$ has a direct connection to the matrix rank.
Rank of a matrix $A$ is a maximal number of linearly independent columns in a matrix $A$, or the dimension of its column space $= \text{dim} \, \text{im}(A)$.
You can also use linear combination of rows to define the rank, i.e. formally there are two ranks: column rank and row rank of a matrix.
Theorem
The dimension of the column space of the matrix is equal to the dimension of its row space.
In the matrix form this fact can be written as $\mathrm{dim}\ \mathrm{im} (A) = \mathrm{dim}\ \mathrm{im} (A^\top)$.
Thus, there is a single rank!
Suppose, we have a linear space, spanned by $n$ vectors. Let these vectors be random with elements from standard normal distribution $\mathcal{N}(0, 1)$.
Q: What is the probability of the fact that this subspace has dimension $m < n$?
A: Random matrix has full rank with probability 1.
Let $N\gg 1$. Given $0 < \epsilon < 1$, a set of $m$ points in $\mathbb{R}^N$ and $n > \frac{8 \log m}{\epsilon^2}$ (we want $n\ll N$).
Then there exists linear map $f$ from $\mathbb{R}^N \rightarrow \mathbb{R}^n$ such that the following inequality holds:
$$(1 - \epsilon) \Vert u - v \Vert^2 \leq \Vert f(u) - f(v) \Vert^2 \leq (1 + \epsilon) \Vert u - v \Vert^2.$$A very useful representation for computation of the matrix rank is the skeleton decomposition and is closely related to the rank. This decompositions explains, why and how matrices of low rank can be compressed.
It can be graphically represented as follows:
or in the matrix form
where $C$ are some $k=\mathrm{rank}(A)$ columns of $A$, $R$ are some $k$ rows of $A$ and $\widehat{A}$ is the nonsingular submatrix on the intersection.
We have not yet formally defined the inverse, so just a reminder:
Take any other column $a_i$ of $A$. Then $a_i$ can be represented as a linear combination of the columns of $C$, i.e. $a_i = C x_i$, where $x_i$ is a vector of coefficients.
$a_i = C x_i$ are $n$ equations. We take $k$ equations of those corresponding to the rows that contain $\widehat{A}$ and get the equation
Thus, $a_i = C\widehat{A}^{-1} \widehat r_i$ for every $i$ and
$$A = [a_1,\dots, a_m] = C\widehat{A}^{-1} R.$$where $C$ is $n \times r$, $R$ is $r \times m$ and $\widehat{A}$ is $r \times r$, or
$$ A = UV, $$where $U$ and $V$ are not unique, e.g. $U = C \widehat{A}^{-1}$, $V=R$.
The form $A = U V$ is standard for skeleton decomposition.
Thus, every rank-$r$ matrix can be written as a product of a "skinny" ("tall") matrix $U$ by a "fat" ("short") matrix $V$.
In the index form, it is
$$ a_{ij} = \sum_{\alpha=1}^r u_{i \alpha} v_{\alpha j}. $$For rank 1, we have
$$ a_{ij} = u_i v_j, $$i.e. it is a separation of indices and rank-$r$ is a sum of rank-$1$ matrices!
It is interesting to note, that for the rank-$r$ matrix
$$A = U V$$only $U$ and $V$ can be stored, which gives us $(n+m) r$ parameters, so it can be used for compression. We can also compute matrix-by-vector $Ax$ product much faster:
The same works for addition, elementwise multiplication, etc. For addition:
$$ A_1 + A_2 = U_1 V_1 + U_2 V_2 = [U_1|U_2] [V_1^\top|V_2^\top]^\top $$#A fast matrix-by-vector product demo
import jax
import jax.numpy as jnp
n = 10000
r = 10
u = jax.random.normal(jax.random.PRNGKey(0), (n, r))
v = jax.random.normal(jax.random.PRNGKey(10), (n, r))
a = u @ v.T
x = jax.random.normal(jax.random.PRNGKey(1), (n,))
print(n*n/(2*n*r))
%timeit (a @ x).block_until_ready()
%timeit (u @ (v.T @ x)).block_until_ready()
500.0 8.64 ms ± 97.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 97.4 µs ± 1.16 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
We can also try to compute the matrix rank using the built-in jnp.linalg.matrix_rank
function
#Computing matrix rank
import jax.numpy as jnp
n = 50
a = jnp.ones((n, n))
print('Rank of the matrix:', jnp.linalg.matrix_rank(a))
b = a + 1e-8 * jax.random.normal(jax.random.PRNGKey(10), (n, n))
print('Rank of the matrix:', jnp.linalg.matrix_rank(b, tol=1e-8))
Rank of the matrix: 1 Rank of the matrix: 6
So, small perturbations might crucially affect the rank!
For any rank-$r$ matrix $A$ with $r < \min(m, n)$ there is a matrix $B$ such that its rank is equal to $\min(m, n)$ and
$$ \Vert A - B \Vert = \epsilon. $$Q: So, does this mean that numerically matrix rank has no meaning? (I.e., small perturbations lead to full rank!)
A: No. We should find a matrix $B$ such that $\|A-B\| = \epsilon$ and $B$ has minimal rank. So we can only compute rank with given accuracy $\epsilon$. One of the approaches to compute matrix rank $r$ is SVD.
The important problem in many applications is to find low-rank approximation of the given matrix with given accurcacy $\epsilon$ or rank $r$.
Examples:
These problems can be solved by SVD.
To compute low-rank approximation, we need to compute singular value decomposition (SVD).
Theorem Any matrix $A\in \mathbb{C}^{n\times m}$ can be written as a product of three matrices:
$$ A = U \Sigma V^*, $$where
Let $\sigma_i = 0$ for $i>r$, where $r$ is some integer.
Let $V_r= [v_1, \dots, v_r]$, $\Sigma_r = \text{diag}(\sigma_1, \dots,\sigma_r)$. Hence
As a result, matrix $U_r = A V_r\Sigma_r^{-1}$ satisfies $U_r^* U_r = I$ and hence has orthogonal columns.
Let us add to $U_r$ any orthogonal columns that are orthogonal to columns in $U_r$ and denote this matrix as $U$.
Then
Since multiplication by non-singular matrices does not change rank of $A$, we have $r = \text{rank}(A)$.
Corollary 1: $A = \displaystyle{\sum_{\alpha=1}^r} \sigma_\alpha u_\alpha v_\alpha^*$ or elementwise $a_{ij} = \displaystyle{\sum_{\alpha=1}^r} \sigma_\alpha u_{i\alpha} \overline{v}_{j\alpha}$
Corollary 2: $$\text{ker}(A) = \mathcal{L}\{v_{r+1},\dots,v_n\}$$
$$\text{im}(A) = \mathcal{L}\{u_{1},\dots,u_r\}$$$$\text{ker}(A^*) = \mathcal{L}\{u_{r+1},\dots,u_n\}$$$$\text{im}(A^*) = \mathcal{L}\{v_{1},\dots,v_r\}$$The best low-rank approximation can be computed by SVD.
Theorem: Let $r < \text{rank}(A)$, $A_r = U_r \Sigma_r V_r^*$. Then
$$ \min_{\text{rank}(B)=r} \|A - B\|_2 = \|A - A_r\|_2 = \sigma_{r+1}. $$The same holds for $\|\cdot\|_F$, but $\|A - A_r\|_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_{\min (n,m)}^2}$.
as $\sigma_1\geq \dots \geq \sigma_{r+1}$ and $$\sum_{i=1}^{r+1} (v_i^*z)^2 = \|V^*z\|_2^2 = \|z\|_2^2 = 1.$$
Corollary: computation of the best rank-$r$ approximation is equivalent to setting $\sigma_{r+1}= 0, \ldots, \sigma_K = 0$. The error
$$ \min_{A_r} \Vert A - A_r \Vert_2 = \sigma_{r+1}, \quad \min_{A_r} \Vert A - A_r \Vert_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_{K}^2} $$that is why it is important to look at the decay of the singular values.
Algorithms for the computation of the SVD are tricky and will be discussed later.
But for numerics, we can use NumPy or JAX or PyTorch already!
Let us go back to the previous example
#Computing matrix rank
import jax.numpy as jnp
n = 50
a = jnp.ones((n, n))
print('Rank of the matrix:', jnp.linalg.matrix_rank(a))
b = a + 1e-5 * jax.random.normal(jax.random.PRNGKey(-1), (n, n))
print('Rank of the matrix:', jnp.linalg.matrix_rank(b, tol=1e-3))
Rank of the matrix: 1 Rank of the matrix: 1
u, s, v = jnp.linalg.svd(b) #b = u@jnp.diag(s)@v
print(s/s[0])
print(s[1]/s[0])
r = 1
u1 = u[:, :r]
s1 = s[:r]
v1 = v[:r, :]
a1 = u1.dot(jnp.diag(s1).dot(v1))
print(jnp.linalg.norm(b - a1, 2)/s[0])
[1.0000000e+00 2.6038917e-06 2.5778331e-06 2.4328988e-06 2.3946168e-06 2.3161633e-06 2.1771170e-06 2.1350679e-06 2.0692341e-06 1.9072305e-06 1.8897628e-06 1.7940382e-06 1.7782966e-06 1.7084487e-06 1.6727121e-06 1.6017437e-06 1.5731581e-06 1.4549468e-06 1.4165987e-06 1.3679330e-06 1.3424550e-06 1.2941907e-06 1.2687507e-06 1.2097146e-06 1.1957062e-06 1.1181866e-06 1.1178938e-06 1.0891903e-06 1.0027645e-06 9.4870353e-07 8.8112211e-07 8.7050188e-07 8.0722310e-07 7.6571308e-07 6.4515058e-07 6.0674591e-07 5.7988444e-07 4.8432429e-07 4.7683716e-07 4.7153273e-07 4.2522197e-07 3.7936982e-07 3.2457302e-07 2.7898491e-07 2.7062282e-07 2.3026750e-07 1.8749994e-07 1.4638464e-07 1.2981367e-07 1.7708503e-08] 2.6038917e-06 2.6034543e-06
We can use SVD to compute approximations of function-related matrices, i.e. the matrices of the form
$$a_{ij} = f(x_i, y_j),$$where $f$ is a certain function, and $x_i, \quad i = 1, \ldots, n$ and $y_j, \quad j = 1, \ldots, m$ are some one-dimensional grids.
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.rc("text", usetex=True)
n = 100
a = [[1.0/(i+j+1) for i in range(n)] for j in range(n)] #Hilbert matrix
#a = jnp.ones((n, n)) + 1e-3*jax.random.normal(jax.random.PRNGKey(67575), (n, n))
a = jnp.array(a)
u, s, v = jnp.linalg.svd(a)
plt.semilogy(s[:30]/s[0], 'x')
plt.ylabel(r"$\sigma_i / \sigma_0$", fontsize=24)
plt.xlabel(r"Singular value index, $i$", fontsize=24)
plt.grid(True)
plt.xticks(fontsize=26)
plt.yticks(fontsize=26)
#We have very good low-rank approximation of it!
(array([1.e-09, 1.e-08, 1.e-07, 1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02]), [Text(0, 1e-09, '$\\mathdefault{10^{-9}}$'), Text(0, 1e-08, '$\\mathdefault{10^{-8}}$'), Text(0, 1e-07, '$\\mathdefault{10^{-7}}$'), Text(0, 1e-06, '$\\mathdefault{10^{-6}}$'), Text(0, 1e-05, '$\\mathdefault{10^{-5}}$'), Text(0, 0.0001, '$\\mathdefault{10^{-4}}$'), Text(0, 0.001, '$\\mathdefault{10^{-3}}$'), Text(0, 0.01, '$\\mathdefault{10^{-2}}$'), Text(0, 0.1, '$\\mathdefault{10^{-1}}$'), Text(0, 1.0, '$\\mathdefault{10^{0}}$'), Text(0, 10.0, '$\\mathdefault{10^{1}}$'), Text(0, 100.0, '$\\mathdefault{10^{2}}$')])
import jax.numpy as jnp
n = 128
t = jnp.linspace(0, 5, n)
x, y = jnp.meshgrid(t, t)
f = 1.0 / (x + y + 0.01) # test your own function. Check 1.0 / (x - y + 0.5)
u, s, v = jnp.linalg.svd(f, full_matrices=False)
r = 10
u = u[:, :r]
s = s[:r]
v = v[:r, :] # Mind the transpose here!
fappr = (u * s[None, :]) @ v
er = jnp.linalg.norm(fappr - f, 'fro') / jnp.linalg.norm(f, 'fro')
print(er)
plt.semilogy(s/s[0])
plt.ylabel(r"$\sigma_i / \sigma_0$", fontsize=24)
plt.xlabel(r"Singular value index, $i$", fontsize=24)
plt.grid(True)
plt.xticks(fontsize=26)
plt.yticks(fontsize=26)
2.604117e-07
(array([1.e-08, 1.e-07, 1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02]), [Text(0, 1e-08, '$\\mathdefault{10^{-8}}$'), Text(0, 1e-07, '$\\mathdefault{10^{-7}}$'), Text(0, 1e-06, '$\\mathdefault{10^{-6}}$'), Text(0, 1e-05, '$\\mathdefault{10^{-5}}$'), Text(0, 0.0001, '$\\mathdefault{10^{-4}}$'), Text(0, 0.001, '$\\mathdefault{10^{-3}}$'), Text(0, 0.01, '$\\mathdefault{10^{-2}}$'), Text(0, 0.1, '$\\mathdefault{10^{-1}}$'), Text(0, 1.0, '$\\mathdefault{10^{0}}$'), Text(0, 10.0, '$\\mathdefault{10^{1}}$'), Text(0, 100.0, '$\\mathdefault{10^{2}}$')])
%matplotlib inline
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# plt.xkcd()
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(121, projection='3d')
ax.plot_surface(x, y, f)
ax.set_title('Original function')
ax = fig.add_subplot(122, projection='3d')
ax.plot_surface(x, y, fappr - f)
ax.set_title('Approximation error with rank=%d, err=%3.1e' % (r, er))
fig.subplots_adjust()
fig.tight_layout()
What is the singular value decay of a random matrix?
import numpy as np
import matplotlib.pyplot as plt
n = 1000
a = jax.random.normal(jax.random.PRNGKey(244747), (n, n))
u, s, v = jnp.linalg.svd(a)
plt.semilogy(s/s[0])
plt.ylabel(r"$\sigma_i / \sigma_0$", fontsize=24)
plt.xlabel(r"Singular value index, $i$", fontsize=24)
plt.grid(True)
plt.xticks(fontsize=26)
plt.yticks(fontsize=26)
(array([1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02]), [Text(0, 1e-06, '$\\mathdefault{10^{-6}}$'), Text(0, 1e-05, '$\\mathdefault{10^{-5}}$'), Text(0, 0.0001, '$\\mathdefault{10^{-4}}$'), Text(0, 0.001, '$\\mathdefault{10^{-3}}$'), Text(0, 0.01, '$\\mathdefault{10^{-2}}$'), Text(0, 0.1, '$\\mathdefault{10^{-1}}$'), Text(0, 1.0, '$\\mathdefault{10^{0}}$'), Text(0, 10.0, '$\\mathdefault{10^{1}}$'), Text(0, 100.0, '$\\mathdefault{10^{2}}$')])
Consider a linear factor model,
$$y = Ax, $$where $y$ is a vector of length $n$, and $x$ is a vector of length $r$.
The data is organized as samples: we observe vectors
but do not know matrix $A$, then the factor model can be written as
$$ Y = AX, $$where $Y$ is $n \times T$, $A$ is $n \times r$ and $X$ is $r \times T$.
SVD is extremely important in computational science and engineering.
It has many names: Principal component analysis, Proper Orthogonal Decomposition, Empirical Orthogonal Functions
Now we will consider compression of dense matrix and active subspaces method
Dense matrices typically require $N^2$ elements to be stored. A rank-$r$ approximation can reduces this number to $\mathcal{O}(Nr)$
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
n = 256
a = [[1.0/(i - j + 0.5) for i in range(n)] for j in range(n)]
a = np.array(a)
#u, s, v = np.linalg.svd(a)
u, s, v = jnp.linalg.svd(a[n//2:, :n//2])
plt.semilogy(s/s[0])
plt.ylabel(r"$\sigma_i / \sigma_0$", fontsize=24)
plt.xlabel(r"Singular value index, $i$", fontsize=24)
plt.grid(True)
plt.xticks(fontsize=26)
plt.yticks(fontsize=26)
#s[0] - jnp.pi
#u, s, v = jnp.linalg.svd(a[:128:, :128])
#print(s[0]-jnp.pi)
DeviceArray(-0.3372376, dtype=float32)
Suppose, we are given a function $f(x), \ x \in \mathcal{X} \subseteq \mathbb{R}^{n}$ and want find its low-dimensional parametrization. Here $\mathcal{X}$ is the domain of $f(x)$.
Informally, we are searching for the directions in which a $f(x)$ changes a lot on average and for the directions in which $f(x)$ is almost constant.
Formally, we assume that there is a matrix $W \in \mathbb{R}^{r \times n}$ and a function $g: \mathbb{R^r} \to \mathbb{R}$, such that for every $x \in \mathcal{X}$
Using SVD:
For further details, look into the book „Active Subspaces: Emerging Ideas in Dimension Reduction for Parameter Studies“ (2015) by Paul Constantine.