You can easily run all the notebooks right in your browser through the Binder
You can download the full zip archive of all course materials
| slides | page | markdown | notebook | |
|---|---|---|---|---|
| Python Introduction | .html | .html | .md | .ipynb |
| Brief Python Intro | .html | .html | .md | .ipynb |
| SVD applications | .html | .html | .md | .ipynb |
| Matrix calculus | .html | .html | .md | .ipynb |
| 01 Floating-point arithmetic, vector norms | .html | .html | .md | .ipynb |
| 02 Matrix norms and unitary matrices | .html | .html | .md | .ipynb |
| 03 Matvecs and matmuls, memory hierarchy, Strassen algorithm | .html | .html | .md | .ipynb |
| 04 Matrix rank, low-rank approximation, SVD | .html | .html | .md | .ipynb |
| 05 Linear systems | .html | .html | .md | .ipynb |
| 06 Eigenvalues and eigenvectors | .html | .html | .md | .ipynb |
| 07 Matrix decompositions and how we compute them | .html | .html | .md | .ipynb |
| 08 Symmetric eigenvalue problem and SVD | .html | .html | .md | .ipynb |
| Overview of the first part of the course | .html | .html | .md | .ipynb |
| 09 From dense to sparse linear algebra | .html | .html | .md | .ipynb |
| 10 Sparse direct solvers | .html | .html | .md | .ipynb |
| 11 Intro to iterative methods | .html | .html | .md | .ipynb |
| 12 Great Iterative Methods | .html | .html | .md | .ipynb |
| 13 Iterative methods and preconditioners | .html | .html | .md | .ipynb |
| 14 Structured matrices, FFT, convolutions, Toeplitz matrices | .html | .html | .md | .ipynb |
| 15 Matrix functions and matrix equations | .html | .html | .md | .ipynb |