Lecture 1: Floating-point arithmetic, vector norms | .html | link | .md | .ipynb |
Lecture 2. Matrix norms and unitary matrices | .html | link | .md | .ipynb |
Lecture 3: Matvecs and matmuls, memory hierarchy, Strassen algorithm | .html | link | .md | .ipynb |
Lecture 4: Matrix rank, low-rank approximation, SVD | .html | link | .md | .ipynb |
Lecture 5: Linear systems | .html | link | .md | .ipynb |
Lecture 6: Eigenvalues and eigenvectors | .html | link | .md | .ipynb |
Lecture 7: Matrix decompositions review. How to compute QR decomposition and Schur decomposition | .html | link | .md | .ipynb |
Lecture 8: Symmetric eigenvalue problem and SVD | .html | link | .md | .ipynb |
Lecture 9: From dense to sparse linear algebra | .html | link | .md | .ipynb |
Lecture 10: Sparse direct solvers | .html | link | .md | .ipynb |
Lecture 11. Direct solvers for sparse matrices (cont'd). Intro to iterative methods | .html | link | .md | .ipynb |
Lecture 12: Great Iterative Methods | .html | link | .md | .ipynb |
Lecture 13: Iterative methods and preconditioners | .html | link | .md | .ipynb |
Lecture 14: Structured matrices, FFT, convolutions, Toeplitz matrices | .html | link | .md | .ipynb |
Lecture 15: Iterative methods for large scale eigenvalue problems | .html | link | .md | .ipynb |
Lecture 16: Matrix functions. Introduction to randomized linear algebra | .html | link | .md | .ipynb |
Lecture 17: Tensors and tensor decompositions | .html | link | .md | .ipynb |