Home Lectures Homework

Lectures

html colab markdown notebook
Lecture 1: Floating-point arithmetic, vector norms .html link .md .ipynb
Lecture 2. Matrix norms and unitary matrices .html link .md .ipynb
Lecture 3: Matvecs and matmuls, memory hierarchy, Strassen algorithm .html link .md .ipynb
Lecture 4: Matrix rank, low-rank approximation, SVD .html link .md .ipynb
Lecture 5: Linear systems .html link .md .ipynb
Lecture 6: Eigenvalues and eigenvectors .html link .md .ipynb
Lecture 7: Matrix decompositions review. How to compute QR decomposition and Schur decomposition .html link .md .ipynb
Lecture 8: Symmetric eigenvalue problem and SVD .html link .md .ipynb
Lecture 9: From dense to sparse linear algebra .html link .md .ipynb
Lecture 10: Sparse direct solvers .html link .md .ipynb
Lecture 11. Direct solvers for sparse matrices (cont'd). Intro to iterative methods .html link .md .ipynb
Lecture 12: Great Iterative Methods .html link .md .ipynb
Lecture 13: Iterative methods and preconditioners .html link .md .ipynb
Lecture 14: Structured matrices, FFT, convolutions, Toeplitz matrices .html link .md .ipynb
Lecture 15: Iterative methods for large scale eigenvalue problems .html link .md .ipynb
Lecture 16: Matrix functions. Introduction to randomized linear algebra .html link .md .ipynb
Lecture 17: Tensors and tensor decompositions .html link .md .ipynb

Additional

html colab markdown notebook
.html link .md .ipynb
Just-in-time compiler for Python, see http://numba.pydata.org .html link .md .ipynb
Automatic differentiation with JAX .html link .md .ipynb
Numerical linear algebra, Skoltech, Fall 2021, general course info .html link .md .ipynb