Lecture 1: Floating-point arithmetic, vector norms | .html | link | .html | .md | .ipynb |
Lecture 2. Matrix norms and unitary matrices | .html | link | .html | .md | .ipynb |
Lecture 3: Matvecs and matmuls, memory hierarchy, Strassen algorithm | .html | link | .html | .md | .ipynb |
PyTorch | .html | link | .html | .md | .ipynb |
JAX Tutorial | .html | link | .html | .md | .ipynb |
Lecture 4: Matrix rank, low-rank approximation, SVD | .html | link | .html | .md | .ipynb |
Lecture 6: Linear systems | .html | link | .html | .md | .ipynb |
Lecture 7: Eigenvalues and eigenvectors | .html | link | .html | .md | .ipynb |
Lecture 8: Matrix decompositions review. How to compute QR decomposition and Schur decomposition | .html | link | .html | .md | .ipynb |
Lecture 9: Symmetric eigenvalue problem and SVD | .html | link | .html | .md | .ipynb |
Lecture 10: Randomized linear algebra | .html | link | .html | .md | .ipynb |
Lecture 11: From dense to sparse linear algebra | .html | link | .html | .md | .ipynb |
Lecture 13: Sparse direct solvers | .html | link | .html | .md | .ipynb |
Lecture 14. Intro to iterative methods | .html | link | .html | .md | .ipynb |
Lecture 15: Great Iterative Methods | .html | link | .html | .md | .ipynb |
Lecture 16: Iterative methods and preconditioners | .html | link | .html | .md | .ipynb |
Lecture 17: Structured matrices, FFT, convolutions, Toeplitz matrices | .html | link | .html | .md | .ipynb |
Lecture 18: Iterative methods for large scale eigenvalue problems | .html | link | .html | .md | .ipynb |
Lecture 19: Matrix functions and matrix equations | .html | link | .html | .md | .ipynb |